Sales Toll Free No: 1-855-666-7446

Hyperbola Calculator

Top
Hyperbola is a curve with a set of points in a plan such that the distance from those points to the two fixed points are constant. Here, the two fixed lines are the foci.

If the coordinate points and value of a and b are given, here a and b are the points from center of hyperbola,
 then the hyperbola calculator helps calculate the focii, eccentricity and the asymptotes.

Hyperbola Graph
 

Steps

Back to Top
Step 1 : Check whether the given problem is in the form,
$\frac{(x - x_{0})^{2}}{a^{2}}-\frac{(y - y_{0})^{2}}{b^{2}}$ = 1
where, a and b are the points from center of hyperbola and find the center points.

Step 2 : To get the desired parameter, substitute the values in the following equations given below.

Use the following equations of hyperbola,
Focus F of X coordinate = $x_{0}+\sqrt{(a^2+b^2)}$

Focus F of Y coordinate = $y_{0}$
Focus F' of X coordinate = $x_{0}-\sqrt{(a^2+b^2)}$

Focus F' of Y coordinate =$y_0$
Asymptotes for L'H :

Asymptotes for H'L : y = -$\frac{b}{a}$$x$ + $y_{0}$ + $\frac{b}{a}$$x_0$

Eccentricity e = $\frac{\sqrt{(a^2+b^2)}}{a}$

Problems

Back to Top
Below are the problems based on hyperbola.

Solved Examples

Question 1:
Find the center, foci, asymptotes and eccentricity of the given equation,
$\frac{(x - 3)^{2}}{25} - \frac{(y + 1)^{2}}{49}$ = 1

Solution:
Step 1: Given equation, $\frac{(x - 3)^{2}}{25}-\frac{(y + 1)^{2}}{49}$ = 1
The center points are (3, -1) and a = 5 , b = 7.

Step 2 :
Focus F of X coordinate = $x_{0} + \sqrt{(a^2+b^2)}$

                        = 3 + $\sqrt{(5^2 + 7^2)}$   
                        = 3 + 8.602
                        = 11.602
                        
Focus F of Y coordinate = -1

Focus F' of X coordinate = $x_{0} - \sqrt{(a^2+b^2)}$

                         = 3 - $\sqrt{(5^2 + 7^2)}$   
                         = 3 - 8.602
                         = -5.602  
                         
Focus F' of Y coordinate = -1

Asymptotes for L'H : y = $\frac{b}{a}$$x$ +$ y_{0}$ - $\frac{b}{a}$$x_0$

                       
= $\frac{7}{5}$$x$ - 1 - $\frac{7}{5}$$ \times$ 3

                      = 1.4x - 5.200
                       
Asymptotes for H'L : y = -$\frac{b}{a}$$x$ + $y_{0}$ + $\frac{b}{a}$$x_0$

                                = -$\frac{7}{5}$$x$ + 1 - $\frac{7}{5}$$ \times$ 3

                                 = -1.4x + 3.200 
                       
Eccentricity e = $\frac{\sqrt{(a^2+b^2)}}{a}$

               = $\frac{\sqrt{(5^2+7^2)}}{5}$

               = $\frac{\sqrt{74}}{5}$

               = 1.720



Question 2:
Find the center, foci, asymptotes and eccentricity of the given equation,
$\frac{(x + 3)^{2}}{16}-\frac{(y - 2)^{2}}{9}$ = 1

Solution:
Step 1: Given equation, $\frac{(x + 3)^{2}}{16}-\frac{(y - 2)^{2}}{9}$ = 1
The center points are (-3, 2) and a = 4 , b = 3.

Step 2 :
Focus F of X coordinate = $x_{0} + \sqrt{(a^2+b^2)}$

                        = -3 + $\sqrt{(4^2 + 3^2)}$  
                        = -3 + 5
                        = 2
                       
Focus F of Y coordinate = 2

Focus F' of X coordinate = $x_{0} - \sqrt{(a^2+b^2)}$

                         = -3 - $\sqrt{(4^2 + 3^2)}$  
                         = -3 - 5                         
                         = -8 
                         
Focus F' of Y coordinate = 2

Asymptotes for L'H : y= $\frac{b}{a}$$x$ + $y_{0}$ - $\frac{b}{a}$$x_0$

                       = $\frac{3}{4}$$x + 2 - $\frac{3}{4}$$ \times$ (-3)

                       = 0.75x + 4.25
                       
Asymptotes for H'L : y = -$\frac{b}{a}$$x$ +$ y_{0}$ + $\frac{b}{a}$$x_0$

                                 = -$\frac{3}{4}$$x$ + 2 + $\frac{3}{4}$$ \times$ (-3)

                                 = -0.75x - 0.25
                      
Eccentricity e = $\frac{\sqrt{(a^2+b^2)}}{a}$

               = $\frac{\sqrt{(4^2+3^2)}}{4}$

               = $\frac{\sqrt{25}}{4}$

               = 1.25