Sales Toll Free No: 1-855-666-7446

Covariance Calculator

Top
Covariance calculator helps to measure how two random variables are related together. Covariance calculator first finds the mean and then determines the covariance.
 

Steps

Back to Top
Step 1 : First find the mean of X and Y.

Step 2 : Substitute these values into the covariance formula given below.

Cov (X, Y) = $\frac{\Sigma (x_i - \bar{x})(y_i - \bar{y})}{N}$

where,
$x_i$ = values of X
$y_i$ = values of Y
$\bar{x}$ = mean value of X
$\bar{y}$ = mean value of Y
N = number of observation

Problems

Back to Top
Below are some of the problems based on covariance.

Solved Examples

Question 1:
Find the covariance of the following set of data,
X = 3, 5, 7, 1, 9
Y = 4, 6, 8, 6, 5

Solution:
Step 1 : Given,
X = 3, 5, 7, 1, 9
Y = 4, 6, 8, 6, 5
N = 5

Mean of X ($\bar{x}$) = $\frac{3 + 5 + 7 + 1 + 9}{5}$ = $\frac{25}{5}$ = 5
$\bar{x}$ = 5

Mean of Y ($\bar{y}$) = $\frac{4 + 6 + 8 + 6 + 5}{5}$ = $\frac{29}{5}$ = 5.8
$\bar{y}$ = 5.8
            
$x_1 - \bar{x}$ = 3 - 5 = -2
$x_2 - \bar{x}$ = 5 - 5 = 0
$x_3 - \bar{x}$ = 7 - 5 = 2
$x_4 - \bar{x}$ = 1 - 5 = -4
$x_5 - \bar{x}$ = 9 - 5 = 4        

$y_1 - \bar{y}$ = 4 - 5.8 = -1.8
$y_2 - \bar{y}$    = 6 - 5.8 = 0.2
$y_3 - \bar{y}$ = 8 - 5.8 = 2.2
$y_4 - \bar{y}$ = 6 - 5.8 = 2.2
$y_5 - \bar{y}$ = 5 - 5.8 = -0.8

Step 2 :  Using the Covariance formula,
Cov(X, Y) = $\frac{\sum_{i}^{n} (x_i - \bar{x})(y_i - \bar{y})}{N}$

          = $\frac{(-2 \times -1.8)+(0 \times 0.2)+(2 \times 2.2)+(-4 \times 2.2)+(4 \times -0.8)}{5}$

          = $\frac{0.4016}{5}$
          = 0.8
          
Covariance of X and Y is 0.8.


Question 2:
Find the covariance of the following set of data,

X = 10, 45, 30, 15
Y = 20, 35, 40, 10


Solution:
Step 1 : Given,
X = 10, 45, 30, 15
Y = 20, 35, 40, 10
N = 4

Mean of X ($\bar{x}$) = $\frac{10 + 45 + 30 + 15}{4}$ = $\frac{100}{4}$ = 25

$\bar{x}$ = 25

Mean of Y ($\bar{y}$) = $\frac{20 + 35 + 40 + 10}{4}$ = $\frac{105}{4}$ = 26.25

$\bar{y}$ = 26.25
           
$x_1 - \bar{x}$ = 10 - 25 = -15
$x_2 - \bar{x}$ = 45 - 25 = 20
$x_3 - \bar{x}$ = 30 - 25 = 5
$x_4 - \bar{x}$ = 15 - 25 = -10      

$y_1 - \bar{y}$ = 20 - 26.25 = -6.25
$y_2 - \bar{y}$ = 35 - 26.25 = 8.75
$y_3 - \bar{y}$ = 40 - 26.25 = 13.75
$y_4 - \bar{y}$ = 10 - 26.25 = -16.25

Step 2 :  Using the Covariance formula,
Cov(X, Y) = $\frac{\sum_{i}^{n} (x_i - \bar{x})(y_i - \bar{y})}{N}$

          = $\frac{(-15 \times -6.25)+(20 \times 8.75)+(5 \times 13.75)+(-10 \times -16.25)}{4}$

          = $\frac{98.75+175+68.75+162.5}{4}$

          = 126
         
Covariance of X and Y is 126.